163 research outputs found

    Epeoloides pilosulus (Cresson) Rediscovered in Michigan, with Notes on the Distribution and Status of its Macropis hosts.

    Get PDF
    Epeoloides pilosulus (Cresson 1878) is one of the rarest bees in North America with only a handful of records since 1960. The last collection in Michigan was made in 1944. Epeoloides pilosulus is a brood parasite of Macropis bees, which until recently had not been collected in Michigan for several decades. Bee surveys in Midland County, Michigan have led to the rediscovery of E. pilosulus in this state ā€“ the first record in 74 years. Michigan becomes the fourth state where E. pilosulus has been rediscovered after Connecticut in 2006, New York in 2014 and Maine in 2016, and the sixth region in North America after Nova Scotia in 2002 and Alberta in 2010. State-wide bee surveys have also shown that the principal host, Macropis nuda (Provancher 1882), remains widespread in Michigan, and that Macropis patellata Patton 1880 is newly recorded for the state

    A Recommender System for Healthy Food Choices: Building a Hybrid Model for Recipe Recommendations using Big Data Sets

    Get PDF
    Advances in Big Data analytics and machine learning have offered intangible benefits across many areas of oneā€™s health. One such area is a move towards healthier lifestyle choices such as oneā€™s diet. Recommender systems apply techniques that can filter information and narrow that information down based on user preferences or user needs and help users choose what information is relevant. Commonly adopted across e-commerce sites, social networking and entertainment industries, recommender systems can also support nutrition-based health management, offering individuals more food options, not only based on oneā€™s preferred tastes but also on oneā€™s dietary needs and restrictions. This research presents the design, implementation and evaluation of three recommender systems using content-based, collaborative filtering and hybrid recommendation models within the nutrition domain

    Localizing wild chimpanzees with passive acoustics

    Get PDF
    Localizing wildlife contributes in multiple ways to species conservation. Data on animal locations can reveal elements of social behavior, habitat use, population dynamics, and be useful in calculating population density. Acoustic localization systems (ALS) are a non-invasive method widely used in the marine sciences but not well established and rarely employed for terrestrial species. We deployed an acoustic array in a mountainous environment with heterogeneous vegetation, comprised of four custom-built GPS synchronized acoustic sensors at about 500 m intervals in Issa Valley, western Tanzania, covering an area of nearly 2 km2. Our goal was to assess the precision and error of the estimated locations by conducting playback tests, but also by comparing the estimated locations of wild chimpanzee calls with their true locations obtained in parallel during follows of individual chimpanzees. We assessed the factors influencing localization error, such as wind speed and temperature, which fluctuate during the day and are known to affect sound transmission. We localized 282 playback sounds and found that the mean localization error was 27 Ā± 21.8 m. Localization was less prone to error and more precise during early mornings (6:30 h) compared to other periods. We further localized 22 wild chimpanzee loud calls within 52 m of the location of a researcher closely following the calling individuals. We demonstrate that acoustic localization is a powerful tool for chimpanzee monitoring, with multiple behavioral and conservation applications. Its applicability in studying social dynamics and revealing density estimation among many others, especially but not exclusively for loud calling species, provides an efficient way of monitoring populations and informing conservation plans to mediate species loss

    Epeoloides pilosulus (Cresson) Rediscovered in Michigan, with Notes on the Distribution and Status of its Macropis hosts.

    Get PDF
    Epeoloides pilosulus (Cresson 1878) is one of the rarest bees in North America with only a handful of records since 1960. The last collection in Michigan was made in 1944. Epeoloides pilosulus is a brood parasite of Macropis bees, which until recently had not been collected in Michigan for several decades. Bee surveys in Midland County, Michigan have led to the rediscovery of E. pilosulus in this state ā€“ the first record in 74 years. Michigan becomes the fourth state where E. pilosulus has been rediscovered after Connecticut in 2006, New York in 2014 and Maine in 2016, and the sixth region in North America after Nova Scotia in 2002 and Alberta in 2010. State-wide bee surveys have also shown that the principal host, Macropis nuda (Provancher 1882), remains widespread in Michigan, and that Macropis patellata Patton 1880 is newly recorded for the state

    Loss of Androgen Receptor-Dependent Growth Suppression by Prostate Cancer Cells Can Occur Independently from Acquiring Oncogenic Addiction to Androgen Receptor Signaling

    Get PDF
    The conversion of androgen receptor (AR) signaling as a mechanism of growth suppression of normal prostate epithelial cells to that of growth stimulation in prostate cancer cells is often associated with AR mutation, amplification and over-expression. Thus, down-regulation of AR signaling is commonly therapeutic for prostate cancer. The E006AA cell line was established from a hormone naĆÆve, localized prostate cancer. E006AA cells are genetically aneuploid and grow equally well when xenografted into either intact or castrated male NOG but not nude mice. These cells exhibit: 1) X chromosome duplication and AR gene amplification, although paradoxically not coupled with increased AR expression, and 2) somatic, dominant-negative Serine-599-Glycine loss-of-function mutation within the dimerization surface of the DNA binding domain of the AR gene. No effect on the growth of E006AA cells is observed using targeted knockdown of endogenous mutant AR, ectopic expression of wild-type AR, or treatment with androgens or anti-androgens. E006AA cells represent a prototype for a newly identified subtype of prostate cancer cells that exhibit a dominant-negative AR loss-of-function in a hormonally naĆÆve patient. Such loss-of-function eliminates AR-mediated growth suppression normally induced by normal physiological levels of androgens, thus producing a selective growth advantage for these malignant cells in hormonally naĆÆve patients. These data highlight that loss of AR-mediated growth suppression is an independent process, and that, without additional changes, is insufficient for acquiring oncogene addiction to AR signaling. Thus, patients with prostate cancer cells harboring such AR loss-of-function mutations will not benefit from aggressive hormone or anti-AR therapies even though they express AR protein

    Synthesis, characterization and biological activity of some Dithiourea Derivatives:

    Get PDF
    Novel dithiourea derivatives have been designed as HIV-1 protease inhibitors using Autodock 4.2, synthesized and characterized by spectroscopic methods and microanalysis

    Guiding Ethical Principles in Engineering Biology Research

    Get PDF
    Engineering biology is being applied toward solving or mitigating some of the greatest challenges facing society. As with many other rapidly advancing technologies, the development of these powerful tools must be considered in the context of ethical uses for personal, societal, and/or environmental advancement. Researchers have a responsibility to consider the diverse outcomes that may result from the knowledge and innovation they contribute to the field. Together, we developed a Statement of Ethics in Engineering Biology Research to guide researchers as they incorporate the consideration of long-term ethical implications of their work into every phase of the research lifecycle. Herein, we present and contextualize this Statement of Ethics and its six guiding principles. Our goal is to facilitate ongoing reflection and collaboration among technical researchers, social scientists, policy makers, and other stakeholders to support best outcomes in engineering biology innovation and development

    Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration

    Get PDF
    Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Pick's disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Pick's disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors

    Type I interferon signaling in hematopoietic cells is required for survival in mouse polymicrobial sepsis by regulating CXCL10

    Get PDF
    Type I interferon (IFN) Ī±/Ī² is critical for host defense. During endotoxicosis or highly lethal bacterial infections where systemic inflammation predominates, mice deficient in IFN-Ī±/Ī² receptor (IFNAR) display decreased systemic inflammation and improved outcome. However, human sepsis mortality often occurs during a prolonged period of immunosuppression and not from exaggerated inflammation. We used a low lethality cecal ligation and puncture (CLP) model of sepsis to determine the role of type I IFNs in host defense during sepsis. Despite increased endotoxin resistance, IFNARāˆ’/āˆ’ and chimeric mice lacking IFNAR in hematopoietic cells display increased mortality to CLP. This was not associated with an altered early systemic inflammatory response, except for decreased CXCL10 production. IFNARāˆ’/āˆ’ mice display persistently elevated peritoneal bacterial counts compared with wild-type mice, reduced peritoneal neutrophil recruitment, and recruitment of neutrophils with poor phagocytic function despite normal to enhanced adaptive immune function during sepsis. Importantly, CXCL10 treatment of IFNARāˆ’/āˆ’ mice improves survival and decreases peritoneal bacterial loads, and CXCL10 increases mouse and human neutrophil phagocytosis. Using a low lethality sepsis model, we identify a critical role of type I IFNā€“dependent CXCL10 in host defense during polymicrobial sepsis by increasing neutrophil recruitment and function
    • ā€¦
    corecore